SAMPLE TRANSLATION AND PROOFREADING PROJECTS COMPLETED

Automotive specs for Peugeot, Citroën, and MG
Hydroelectric power plant specs for GE
Aircraft training manuals for Airbus
Publications of Japan Aerospace Exploration Agency researchers


SAMPLE TRANSLATIONS

FRENCH > ENGLISH: Mathematics

Source text - French

Géométrie algébrique


La géométrie algébrique est l'étude des systèmes d'équations polynomiales. Tant les problématiques que les techniques mises en oeuvre sont multiples : géométriques (par exemple, on sait bien que le choix de la forme des cheminées de centrales nucléaires est due à l'existence de nombreuses droites propices aux coffrages des surfaces quadratiques), arithmétiques (par exemple, que peut on dire des solution entières, ou plus simplement modulo p des équations y^2=x(x-1)(x-t) ou x^n+y^n=z^n, analytiques, voire logiques et j'en passe. C'est en fait un grand carrefour. Dans les dernières décennies, on a d'ailleurs découvert de surprenantes interactions avec la physique théorique. Cette discipline a subi un profond bouleversement dans les années 60 unifiant les différents aspects arithmétiques et géométriques. Elle est en pleine activité.

Exemples de stages effectués ces dernières années

1. Introduction à la théorie des modèles : la logique a permis de façon un peu surprenante de démontrer des énoncés mathématiques difficiles de façon extrêmement simple. Le but de l'option est d'en comprendre un exemple, le théorème d'Ax : soit X?Cn un sous-ensemble défini par des équations polynomiales. Soit f : Cn ? Cn polynomiale. Alors, si f induit une injection de X dans X, alors f induit une bijection de X. La preuve consiste essentiellement à justifier la phrase suivante : on peut supposer que C est un corps … fini !

2. alternative de Tits : un sous groupe finiment engendré de GL_n(C) qui ne contient pas de groupe libre à 2 générateurs contient un sous groupe d'indice fini qui est résoluble.

3. Z est simplement connexe : analogie corps de nombres et surfaces de Riemann.

4. Introduction à la théorie de Hodge.

Translation - English

Algebraic Geometry

Algebraic geometry is the study of polynomial equation systems. The problems associated with it, as well as the techniques applied, are numerous: they are geometrical (e.g. it is well known that the shape of ducts in nuclear power plants is determined based on the existence of numerous straight lines that form quadratic surfaces); arithmetical (e.g. what could be said about complete solutions, or simply modulo p solutions of equations y^2=x(x-1)(x-t) or x^n+y^n=z^n); analytical; and even logical, among others. In fact there is a big variety. Moreover, in the last few decades we have discovered surprising interactions with theoretical physics. This discipline was shaken up in the 60s, which led to the unification of various arithmetical and geometrical aspects. Today it is in full activity.

Examples of studies carried out in the last few years:

1. Introduction to model theory: Logic has made it possible – in a rather surprising way – to prove difficult mathematical statements in an extremely simple manner. The goal of this option is to prove, for example, the theorem of Ax: let X?Cn be a subset defined by polynomial equations. Let f: Cn ? Cn be a polynomial. Thus, if f induces an injection of X into X, then f induces a bijection of X. The proof essentially consists in justifying the following statement: We can assume that C is …a finite field!

2. The Tits alternative: a subset finitely generated by GL_n(C) which does not contain any free group in two generators, contains a finite-index subset which is solvable.

3. Z is simply connected: analogy between number fields and Riemann surfaces.

4. Introduction to Hodge theory.



ENGLISH > FRENCH: Physics & Astronomy

Source text - English

Where are they?
Maybe we are alone in the galaxy after all
by Ian Crawford

[...] The apparent rarity of technological civilizations begs for an explanation. One possibility arises from considering the chemical enrichment of the galaxy. All life on Earth, and indeed any conceivable extraterrestrial biochemistry, depends on elements heavier than hydrogen and helium--principally, carbon, nitrogen and oxygen. These elements, produced by nuclear reactions in stars, have gradually accumulated in the interstellar medium from which new stars and planets form. In the past the concentrations of these elements were lower--possibly too low to permit life to arise. Among stars in our part of the galaxy, the sun has a relatively high abundance of these elements for its age. Perhaps our solar system had a fortuitous head start in the origins and evolution of life.

But this argument is not as compelling as it may at first appear. For one, researchers do not know the critical threshold of heavy-element abundances that life requires. If abundances as low as a tenth of the solar value suffice, as seems plausible, then life could have arisen around much older stars. And although the sun does have a relatively high abundance of heavy elements for its age, it is certainly not unique [see "Here Come the Suns," by George Musser; SCIENTIFIC AMERICAN, May 1999]. Consider the nearby sunlike star 47 Ursae Majoris, one of the stars around which a Jupiter-mass planet has recently been discovered. This star has the same element abundances as the sun, but its estimated age is seven billion years. Any life that may have arisen in its planetary system should have had a 2.5-billion-year head start on us. Many millions of similarly old and chemically rich stars populate the galaxy, especially toward the center. Thus, the chemical evolution of the galaxy is almost certainly not able to fully account for the Fermi Paradox. [...]

Translation - French

Mais où sont-ils?
Peut-être sommes-nous seuls dans la galaxie après tout!
d'après Ian Crawford

[...] L’apparente rareté de civilisations technologiquement avancées demande une explication. On peut l’expliquer en considérant l’enrichissement chimique de la galaxie. Toute vie sur Terre, et en fait toute biochimie extraterrestre concevable, dépend d’éléments plus lourds que l’hydrogène et que l’hélium, notamment le carbone, l’azote et l’oxygène. Ces éléments, produits par des réactions nucléaires dans les étoiles, se sont progressivement accumulés dans l’espace intersidéral, où se forment les nouvelles étoiles et les nouvelles planètes. Par le passé, la concentration de ces éléments était inférieure à celle d’aujourd’hui, ou peut-être même trop basse pour que la vie puisse apparaître. Parmi les étoiles qui se trouvent dans notre région de la galaxie, le soleil possède ces éléments en abondance relativement grande pour son âge. Peut-être notre système solaire a-t-il par hasard été le premier à donner naissance à la vie et à la faire évoluer.

Cependant, cet argument n’est pas aussi indiscutable qu’il paraît: premièrement, les chercheurs ne connaissent pas le seuil critique à partir duquel la quantité d’éléments lourds est suffisante à l’existence de la vie. Si des quantités d’éléments lourds aussi petites que le dizième de celles existant sur le soleil sont suffisantes, ce qui semble plausible, la vie aurait pu naître autour d’étoiles beaucoup plus vieilles que le soleil. Et même si le soleil possède des éléments lourds en abondance relativement forte pour son âge, il n’est certainement pas le seul [voir «Here Come the Suns», de George Musser; SCIENTIFIC AMERICAN, MAI 1999]. Considérons une étoile proche, semblable au soleil, autour de laquelle on a récemment découvert une planète de même masse que Jupiter: 47 Ursae Majoris. Cette étoile possède les mêmes quantités d’éléments que le soleil, mais son âge est estimé à sept milliards d’années. Tout être vivant existant dans son système planétaire aurait dû naître 2,5 milliards d’années avant nous. Plusieurs millions d’étoiles aussi vieilles et riches en éléments chimiques que 47 Ursae Majoris existent dans la galaxie, surtout vers le centre. Ainsi, il est presque certain que l’évolution chimique de la galaxie ne suffit pas à résoudre le paradoxe de Fermi. [...]



FRENCH > ENGLISH: Social Sciences

Source text - French

LA CHRONIQUE
Euro-islamisme
par Bernard Guetta

Ils passent à la cravate, italienne et baroque, façon Versace. Certains gardent la barbe, mais taillée si court, si soigneusement négligée, si mode qu'ils n'ont plus rien d'islamistes. En Turquie, les islamistes n'aiment plus l'islamisme.

C'est désormais l'Europe qu'ils aiment, parce qu'elle imposera, disent-ils, la démocratie à leur pays, que leurs militaires ne pourront plus, dans une Turquie européenne, les tenir à la lisière de la vie politique, qu'ils seront enfin libres d'accéder au pouvoir sans que l'armée, comme il y a trois ans, les en chasse aussitôt.

Pour eux, l'Europe a d'abord été une arme, une conversion tactique, mais les mots pèsent en politique. À force d'affirmer leur soudain attachement au modèle européen, à l'État de droit, à la tolérance et à la démocratie, à force de retourner ces principes contre ceux qui leur refusaient la liberté au nom des libertés, ils intègrent les valeurs qu'ils combattaient autrefois.

Ce n'est pas seulement l'habit qui change, Ce sont aussi les esprits. Mustafa Sen, par exemple. Costume souple et lunettes légères, 35 ans, il présidait hier la Fondation de la jeunesse nationale, ancien fer de lance de l'islamisme turc. Devenu consultant et chef adjoint du département international du Fazilet, le Parti de la vertu, il explique aujourd'hui que, si sa femme décidait d'abandonner le voile, il n'en divorcerait pas pour autant.

«Nous avons été rigides, dit-il, car nous adhérions à une idéologie, l'islamisme, qui est partout en échec et qui a déjà échoué en Turquie. Aujourd'hui, pour la première fois, nous lisons vraiment, nous découvrons notre religion, qui dit : " Il n'est pas d'autre Dieu que Dieu ". Cela signifie, commente-t-il, que lui seul peut édicter des règles, que la décision de porter ou non le voile n'appartient qu'aux femmes, puisqu'il leur laisse la liberté de choix.»

«Ni l'État ni les musulmans, poursuit-il, personne ne peut aller contre ce droit, car les droits de l'homme et la liberté sont inscrits dans l'islam. Un musulman se doit de vivre en musulman, un chrétien en chrétien et, si vous êtes athée, rendez-vous dans l'au-delà, mais libre à vous de vivre en athée.» Le discours se cherche encore.


L'Express, le 1/6/2000, (p. 29)
(Extrait)

Translation - English

THE CHRONICLE
Euroislam
by Bernard Guetta

They wear eccentric Italian-type ties, Versace style. Some still wear beards, but cut so short, so neatly unkempt and so fashionable that they no longer look like Islamists at all. In Turkey, Islamists no longer like Islam.

Henceforth it’s Europe that they like, because they say it will impose democracy on their country; their military will no longer be able to keep them out of politics in a European Turkey, and they will finally be free to come to power without being immediately overthrown by the army, as happened three years ago.

At first they regarded Europe as a weapon: theirs was a tactical conversion, but words carry weight in politics. By asserting time and time again their sudden attachment to the European model, to a legally constitutional government, to tolerance and democracy, and by repeatedly turning these principles against those who refused them their freedom in the name of freedom, they assimilate the values which they used to fight.

It is not only the look that has changed, but also the way of thinking. For example, 35-year-old Mustafa Sen, wearing a casual suit and light-weight glasses, presided until recently at the National Youth Foundation, former spearhead of Turkish Islam. A consultant and assistant director of the international department of Fazilet – the Virtue party – he explains that even if his wife decided to abandon the veil, he wouldn’t necessarily divorce her.

“We have been rigid,” he says, “because we stuck to an ideology – Islam – which is failing everywhere and which has already failed in Turkey. Today for the first time we are really reading; we are discovering our religion according to which ‘There is no God but God’. He comments: This means that only He can dictate the rules, and that the decision on whether women should wear a veil or not belongs only to them, since He gave them the freedom of choice”.

He continues: “Neither the state nor Muslims, or anybody else, can go against this right, because human rights and the right to freedom are part of Islam. A Muslim must live as a Muslim, a Christian as a Christian, and if you are an atheist, see you in the hereafter, but you are free to live as an atheist”. The discourse is still muddled.


L’Express, 6/1/2000 (p. 29)
(Excerpt)


SPANISH > ENGLISH: Social Sciences

Source text - Spanish

TRIBUNA: JOSÉ MANUEL SÁNCHEZ RON


¿Para qué la ciencia?

José Manuel Sánchez Ron es catedrático de Historia de la Ciencia en la Universidad Autónoma de Madrid. EL PAÍS – 07-01-2003

La crisis producida por el vertido del Prestige, como hace algún tiempo los casos de las denominadas vacas locas, el accidente de Aznalcóllar con sus consecuencias para el ecosistema de Doñana o los posibles efectos de radiaciones electromagnéticas, ha sacado a la palestra, una vez más, la cuestión de la ciencia en España. Es inevitable que sea así, aunque no sea el mejor escenario para una discusión cabal del papel de la ciencia en un país en el que tal discusión se intensifica precisamente en momentos de desgracias, en situaciones de crisis.

Es absolutamente cierto que, citando algunas manifestaciones aparecidas estos días, España es “un país de poca ciencia”, o que “la existencia de una comunidad científica fuerte e independiente es un elemento clave para resolver los problemas que plantea de forma repetida nuestro mundo moderno”. Sí, es cierto que vivimos en un mundo cuyas características hacen que sea imprescindible poseer extensos “depósitos” de conocimientos científicos. Más aún, que vivimos en un mundo penetrado por la ciencia y la tecnología en tal medida que aumenta nuestra indefensión cuanto menor es nuestro grado de familiaridad con esa ciencia y esa tecnología. Hay evidentemente que escuchar a los científicos y dar la bienvenida o exigir su ayuda y conocimientos, más aún en momentos de crisis. Pero al mismo tiempo hay que tener muy claras algunas ideas acerca de lo que es y lo que puede ofrecer la ciencia, a la que yo considero, me apresuro a señalar, la mayor fuerza liberadora a disposición de la especie humana; liberadora de errores, mitos, servidumbres y limitaciones físicas (aunque no debemos olvidar otros, como la idea de justicia). La ciencia es, en efecto, el mejor instrumento que poseen los humanos para resolver problemas relacionados con la naturaleza que les rodea, pero la ciencia no puede resolver todos los problemas. O dicho de otra forma: no todos los problemas tienen solución, o no lo tienen en el lapso de tiempo que sería necesario para evitar algunos de los problemas que a veces afectan, de repente o no, a la sociedad, problemas como pueden ser los agujeros de la capa de ozono o el sida. [...]

Si esto no se comprende, si no se sabe que la ciencia es un instrumento maravilloso de conocimiento y de actuación, pero que tiene sus límites y sus tiempos propios y variables, puede suceder que haya quienes se sientan engañados al comprobar, en situaciones de crisis social, cuando desesperadamente necesitan soluciones, que éstas no llegan tan pronto y eficazmente como creían o como algunos les habían inducido a pensar. Y que entonces surja algún tipo de resquemor ante la ciencia. Sería un grave error: ¿piensa alguien que el que la ciencia no haya sido capaz todavía de erradicar el cáncer o el sida significa que la solución provendrá de algún otro tipo de “conocimiento”? En el caso de los agujeros de ozono, por ejemplo, ¿habríamos sido capaces de darnos cuenta de su existencia, causas y forma de combatirlo sin la ciencia?

Translation - English

SPOTLIGHT: JOSÉ MANUEL SÁNCHEZ RON


Why Science?

José Manuel Sánchez Ron is a professor of History of Science at the Autonomous University of Madrid. EL PAÍS – 07-01-2003

The crisis caused by the oil spill of the Prestige, similarly to the cases of the "mad cows", the Aznalcóllar mine accident with its consequences on the ecosystem of Doñana, or the possible effects of electromagnetic radiation, has once again brought to the arena the issue of science in Spain. It is inevitable to talk about science, although this is not the best occasion for an accurate discussion on the role of science in a country where such a discussion intensifies precisely at times of misfortune and in crisis situations.

It is absolutely true that -quoting some manifestations that occurred recently- Spain is “a country of little science”, or “the existence of a strong and independent scientific community is a key element for solving the problems that our modern world creates repeatedly”. Yes, it is true that we live in a world whose characteristics require that we have extensive “deposits” of scientific knowledge. What's more, it is true that we live in a world penetrated by science and technology to such an extent that the less familiar we are with this science and technology, the more defenceless we become. It is clearly necessary to listen to scientists and welcome -or even demand- their help and knowledge, all the more so at times of crisis. But at the same time it is necessary to have a very clear idea of what science is and what it can offer, this science which I consider -as I am anxious to point out- the greatest liberating force available to the human species; it liberates us from errors, myths, subjections, and physical limitations (although we must not forget other things such as the notion of justice). Science is, in fact, the best tool that humans possess in order to solve problems related to the nature that surrounds them, but science cannot solve all problems. In other words, not all problems have a solution, or they don't have one in the time period that would be needed to avoid some of the problems that often affect society (whether that happens suddenly or not), such as the holes in the ozone layer, or AIDS. [...]

If people don't understand, if they don't know that science is a wonderful instrument of knowledge and intervention but which has its limits and its own variable time, it is possible that there will be some of them who will feel deceived when they realise, in situations of social crisis when they desperately need solutions, that these solutions do not come very quickly and effectively as they believed, or as some had led them to think. And then some kind of resentment may arise towards science. This would be a big mistake; does anybody really think that the fact that science has not yet been able to eradicate cancer or AIDS means that the solution will come from some other type of "knowledge"? In the case of the ozone holes, for example, would we have been able to notice their existence, their causes, and the way to fight the problem, without science?


SPANISH > ENGLISH: Science

Source text - Spanish

Cròniques de l'altra veritat
Rubes Editorial
176 páginas
15'5 x 23'5cm
Noviembre de 2004

El descubrimiento de la insulina. ¿Quién fue el primero?

Los titulares de este trabajo, Christian Azcárate, David Sardà i Laia Chang, creen que tal vez sea demasiado largo, y eso que sólo mencionan brevemente algunos de los investigadores que han tomado el camino del descubrimiento de la insulina. Insinúan también la actual investigación con células madre. Uno de los autores, Christian Azcárate, es diabético. Fácil pues suponer el porqué de este tema.

En el siglo XIII, Dante Allighieri, de quien es la cita inicial, en su Divina comedia describe ya la hidropesía, que se confundía con la diabetes.

En 1913, el británico sir Edward Albert Sharpey-Schafer fue uno de los investigadores que apoyó la hipótesis de la secreción endocrina de una hormona pancreática, que llamó insulina. Pero uno de los investigadores fundamentales en la resolución del enigma es el rumano Nicolae Constantin Paulescu, que en 1921 informó de sus experimentos sobre el aislamiento del principio antidiabético del páncreas, que llamó pancreína. Lo hizo 5 meses antes que dos canadienses, BFC Banting y CH Best, llegaran a la misma conclusión.

En 1923, el Nóbel de Medicina es, sin embargo, sólo para Banting (profesor de prácticas en la Facultad de Medicina de la Universidad de Ontario Occidental) y para JJ Richard McLeod, de origen escocés y catedrático de la Universidad de Toronto, que es quien pone a disposición del primero su laboratorio. Charles Best se añade al proyecto en calidad de becario, y más tarde en la fase de pruebas en humanos lo haría James Bertram Collip, de la Universidad de Alberta.

El calor del verano de 1921 mata a 10 de los primeros 19 perros que se usan en los experimentos. Pero las muestras obtenidas a partir de sus páncreas se administran por vía intravenosa a 3 animales supervivientes. Los dos primeros mueren y en el tercero se observa una disminución acusada de la concentración de glucosa en la sangre. Al producto resultante lo llamarán isletin, y posteriormente insulina.

Banting y McLeod se enfrentan cuando el segundo, consciente de la importancia del descubrimiento, pone en duda el rigor de los datos.

En 1922 se produce la primera prueba en humanos del isletin y con éxito. Un año después sale la primera insulina de origen animal para el tratamiento de la diabetes. La prensa destaca el nombre de McLeod, que se autoproclama director de este trabajo en equipo, del que sí había sido asesor y que de hecho aconsejaría a Banting y Best utilizar alcohol para extraer la insulina.

El Premio Nóbel de Medicina danés August Krogh (1874-1949) pudo experimentar en su propia esposa (diabética) la grandeza del hallazgo, y es quien propone a Banting y McLeod para el Nóbel, siendo Best y Collip sólo colaboradores. Banting repartiría luego su premio con Best, y McLeod con Collip. Pero también Paulescu reclamó su papel desde Bucarest. El Comité del Nóbel reconocería después su aportación, así como la de Best.

Translation - English

Cròniques de l'altra veritat
Rubes Editorial
176 pages
15.5 x 23.5cm
November 2004

The Discovery of Insulin: Who was First?

The authors of this work, Christian Azcárate, David Sardà, and Laia Chang, think that perhaps it is too long, even though they only mention briefly some of the researchers who followed the path of the discovery of insulin. They also insinuate the current research on stem cells. One of the authors, Christian Azcárate, is diabetic. The choice of subject is therefore obvious.

In the XIII century Dante Allighieri, to whom the initial quote belongs, in his Divine comedy already describes hydropsy, which people would confuse with diabetes.

In 1913, the Englishman Sir Edward Albert Sharpey-Schafer was one of the researchers who supported the hypothesis of endocrine secretion of a pancreatic hormone, which he called "insulin". But one of the fundamental researchers in solving the enigma was Nicolae Constantin Paulescu, a Romanian who in 1921 talked about his experiments on the extraction of the antidiabetic principle from the pancreas, which he named "pancreine". He did this five months before two Canadians, BFC Banting and CH Best, reached the same conclusion.

In 1923, the Nobel prize in Medicine was awarded, nevertheless, only to Banting (professor of practical medicine at the University of Western Ontario, Faculty of Medicine) and to JJ Richard McLeod, of Scottish origin and professor at the University of Toronto, who allowed Banting to use his laboratory. Charles Best is added to the project as an intern, and later on James Bertram Collip, of the University of Alberta, participates in the phase of human testing.

The summer heat of 1921 kills ten out of the first nineteen dogs that are used in the experiments. But the samples obtained from their pancreas are administered intravenously to three of the surviving animals. The first two die and the third shows a noticeable decrease in glucose concentration in the blood. They call the resulting product isletin, and later on insulin.

Banting and McLeod meet when the second, aware of the importance of the discovery, calls into question the rigor of the data.

In 1922 the first human test of isletin takes place successfully. A year later the first insulin of animal origin becomes available for the cure of diabetes. The press emphasises McLeod's name, who proclaims himself director of this team work, of which he had been adviser and in fact suggested that Banting and Best use alcohol to extract the insulin.

The Danish winner of the Nobel prize in Medicine, August Krogh (1874-1949), could experiment on his own wife (who was diabetic) the greatness of the finding, and it is he who proposes Banting and McLeod as candidates for the Nobel prize, Best and Collip being only collaborators. Banting would soon share the prize with Best, and McLeod with Collip. But Paulescu also claimed his share from Bucharest. The Nobel Committee would later recognise his contribution, as well as that of Best.